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NMR assignments of proteins are obtained by combining several (a) (b) o CB. 0
multidimensional experiments!™,'HN-resolved triple resonance GFT(ay): ||, {l l ||,
experiments sequentially linkintfC*# and/ortHe shifts are the accyzace /C'-.',\ 22NN 7 BN /
most widely used.For (partly) unfolded on-helical (membrane) GFT(ay): < |1’L - ;,\l {lr-' Tf
proteins, spectral analysis is, however, impeded by very high shift FT(@): QCHY) QN x*Q(PC) CP, ',H> CP, H}

i - i

degeneracy, so that novel methodology for their efficient assignment i
Figure 1. () 13C'i—1,'N,'HN-resolved (5,3)D &T NMR. (b) Magnetiza-

i i 15N] 14N i

S ,req‘fS'reol" H degeneracy can be largely removed in - ;oth oot of HIN,COH C#C (left) and HN NCOH CHCa}. (right).
C'i-1,"Ni,'HN-resolved experiments(i is a residue number).  poyple arrows indicate bidirectional transfers via one-bond scalar couplings.
When using correlated3C¥? or 13C%/He shifts to establish The “intraresidue” experiment (left) also yields sequential connectivities
connectivities, conventional NMRwvould require the recording of ~ via smallet two-bond2Jcy couplings.

5D spectra. Measurement times for such spectra are prohibitively )

long or lead to “sampling-limited” data collectiénG-matrix FT - *”‘ ~| I I |“7IL 4"
(GFT) NMR/ rooted in reduced-dimensionality NMRnd related ] e | o
to accordion spectroscof§®can (i) rapidly provide precise high- "~ | I L—Ifl | I I Lfll I [ I
dimensional spectral information and (ii) serve to reconstruct higher- ol . o
dimensional spectré:d Previously published (4,3)D GFT experi- pee | ‘||| A HJr A 7Iﬁ |||
mentg¢ have greatly increased the speed of NMR structure N 1
determination, but are not optimally tailored for proteins with very ~"co s | W
high shift degeneracy.

Here, we present novel ‘6T NMR experiments” in which two PEG i” o C| Clﬁ L, 55 [T
G-matrix transformations are applied. This allows one to jointly ! ! ILL'—'—I—

sample shifts solely servmg.t(.) provide |ngreased re.sgllmmm Figure 2. Radio frequency (r.f) pulse scheme offRG L-(5,3)D
arately from those also providing sequential connectivities. As a HN{N,CO}{C*C} . The 90 and 180pulses are represented by thin and
result, one obtains data sets in which spin system identification thick vertical bars. Composite 18(ulses (hatched bars) are used to
can be based on (3,2)D GFT NMR in the first GFT dimension, simultaneously invert3C* and3C’ polarization. The scalirfg->2factor «

while the previously described peak pattétiisr sequential assian- for 13C' shift evolution was set to 0.25 because (i) polarization transfer in
p y peaxp q g the sequential counterpart (i.e., (5,3)D HWCO} { C*C*} (Figures 1, S2))

. ) . - e cefC
Znint are retained in the second _GFT dlmensmn._lﬂﬁ@t._l, N, limits tna(3C') t0 ~6 Ms; (ii) A Shortua3C) fimits To(3C') losses in
HN;-resolved experiments were implemented (FigureSN; and (5,3)D HN{N,CO}{ C*%C} with non-constant timel3C' shift evolution;
13C'i_; shifts are jointly sampled for breaking’N,'HN shift and (i) tmax(1®N) &~ 24 ms ensures high spectral resolutionsin A 90°

degeneracy,and 3C*# and 13C* shifts are jointly sampled for selective pulse after the 2nd “hard” 9tH pulse enables water flip-batk

. [ . . ) and L-optimizatiorfc7°For definition of rectangulazfield gradients, delays,
sequentially linking spin systenfsResulting (5,3)D HNN,CO} and phase cycling, see legend of Figure S1. Quadrature detection in

{C*C} and HNNCO}H C*/C} provide, respectively, intraresidue  ,(1s\:13c') is achieved with sensitivity enhancem(@s is inverted with
and sequential connectivities via one-bond scalar couplings (Figurea 180 shift for ¢g); in ty(13C*13C*5), ¢, is altered according to States-
1) based on 22(13C%), Q(3C%) + Q(*3CF), and Q(*3C¥) — TPPI* GFT NMR phase cyclepy = X, ¥; ¢2 = 2X, 2y; ¢3 = 2y, 2X. A
Q(13CF).4c The brackets group jointly sampled shifts represented descrlptl_on of GFT theory and data processing is provided as Supporting
by underlined letter& and in (5,3)D HNN,CO}{C¥C%}, the  mormation.
comma indicates a bifurcaté@C'i_, — **N; — 13C% transferz5¢.e centered about peaks in 2BN,*H]-HSQC and provide spin system
The r.f. pulse schemes of (5,3)D KIN,CO}{ C*C%} (Figures identification. (ii) Peak pair positions are transferred to (5,3)D
2, S1) and HNNCO}{C#C} (Figure S2) yield “out-and-back”  G2FT subspectra, where the same pattern is observed aby:
transfers. This allows employment of GRITROSY"2for (large) Q(N) + kQ(*C"). Signals atw: 2*Q(*3C*) are “central peaks”
deuterate¥lproteins (embedded in membrane mimics) and enables for pair identification atw;: Q(*3C%) £+ Q(*3CF),% which profits

longitudinal'H relaxation (L-) optimizatiori® (5,3)D HN\{N,CC} - from increased dispersion along; due to GfC* frequency
{C¥C*} and HN\NCCO}{ C**C”} L-G?FT NMR experiments were  labeling (iii) “Sequential walks” atw,: Q(*°N) + «Q(13C") in
performed (Table S1), respectively, in 24 and 20 h ferta8 mM two sets of subspectra yield three connectivities each, that is, a
solution of1N,13C doubly labeled 17 kDa protein ygbG, target of total of six.

the Northeast Structural Genomics consortium, at°€50on a a-Helical protein ygbG exhibit®N,*HN shift degeneracy in 2D

VARIAN INOVA 600 spectrometer equipped with a cryogenic [*N,*H]-HSQC (Figures 3a, S4a). This is aggravated at the lower
probe. Processing yields four subspectra. Each contains one peakesolution of 3D spectra (Figures 3b, S4b), where complete
of a quartet awy: Q(A3CY) £ Q(RCY)/w, Q(N) £ «Q(*3C). degeneracy is observed for eight residues. In contrast, at least one
Assignments are accomplished in three steps. (i) Peak pairs at  of the two peaks ab,: Q(*®N) + «Q(*3C') (Figures 3c,d and S4c,d)
Q(BN) £+ «Q(*C') in (3,2)D HNNCO (Figure S3; Table S1) are is resolved forall residues. This allows efficient sequential

4554 m J. AM. CHEM. SOC. 2005, 127, 4554—4555 10.1021/ja042562e CCC: $30.25 © 2005 American Chemical Society
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Figure 3. Plots of (a) 2D °N,!H]-HSQC! (b) [w1(**N),ws(*HN)] projection

of 15N-resolved 3D spectra recorded for protein ygbG (9580£3%2H,0;

20 mM MES, pH 6.5, 100 mM NaCl, 10 mM DTT, 5 mM CagD.02%
NaNg). (c and d) First,@2(*N;13C"),ws(*HN)] planes from 3D NCO-resolved
experiments € = 0.25) showing signals &®(*5N) + «Q(*3C’) (left) and
Q(5N) — «Q(*3C") (right). The green signal in (a) and (b) arises from Tyr12
and Asp74 having degenerdf® andHN shifts; peaks are resolved in (c)
and (d) due to nondegener:iﬁi:;,1 shifts.
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Figure 4. [w1(*3C*YC%),w3(*HN)] strips from GFT (5,3)D HN(N,CO} -
{CeC} (“a”) and HN{NCO}{C**C*} (“b”) recorded for 17 kDa protein

ygbG. Strips were taken aby(*°N;13C') of residues lle122 to Lys125
(chemical shifts indicated at bottom) and comprise peakQ#t3C*) +
Q1(13C9) (red) andQo(*3C%) + Q1(*3CF) (blue). Peaks “1="9” are assigned

to Gly (one letter code: G) 121 (3); lle (I) 122 (1,2); Glu (E) 123 (4,5);
Ala (A) 124 (6,7); Lys (K) 125 (8,9). Connectivities are indicated by dashed
lines; six sequential “walks” are established.

assignment using the (5,3)D HN,CO}{C*C*} (peak detection
yield 93%)/HN NCO}{ C**C%}° (yield 95%) experiments (Figure
4). In general, high assignment efficiency is predicted even when
considering shifts of proteins with more than 8@3helical content
(Figure S7).

L-Optimization™ (Figure 2) can increase sampling speed of out-
and-back experiments without loss of intrinsic sensititityielding
minimal measurement times of7 h for (5,3)D HNN,CG}-
{C*C}/HN{NCCO}{C**C*} (Table S1). A further reduction of
measurement time can be achieved by maximum entropy recon-
struction of nonlinearly sampled d&ftai®as is demonstrated here
for 13.5 kDa protein rps24e, target of the Northeast Structural
Genomics consortium. L-(5,3)D 26T HN{NCO}{C*C*} data
were recorded in 3.5 h (Figure S8), making L-(5,3)EFG NMR
a viable option for high-throughput data collection in structural
genomicsi!

To enable assignment of systems with very high shift degeneracy,
additional GFT NMR experiments were implemented (Table S1).
We recorded for 8 kDa protein Z-domain(5,3)D HN{N,CC}-
{CH*} (Figure S9; measurement time 16 h; peak detection yield
100%) and (5,3)0 H*C*}{ CON}HN (Figure S10; 13 h; 100%),
which allows3C’i_1,15N;,'HN;-resolved sequential assignment based
on Q(¥¥C%) and Q(*H*) (Figure S11), and for 9 kDa protein

ubiquitin, we recorded (6,3)PH**C**C*} { CON}HN (Figure S12,
S13; 24 h; 100%) for assignment®i*. As was shown for (4,3)D
GFT congener& C¥Ce-type GFT experiments can be combined
with (5,3)D HCC-CH for aliphatic side chain assignment. Experi-
ments profiting from largé3C« shift dispersiohwere recorded for
13.5 kDa protein rps24e. (5,3)D?BT HN{NC*}{C*C*} (Figure
S14; 13 h; 100%) and (5,3)D HNI(CO)C}{ C*C} (Figures S15;

13 h; 100%) enable3C* 5N, HN-resolved sequential assign-
ment (Figure S16). The (5,3)D%T NMR experiments can be
combined with!®N-resolved (4,3)D counterparts!3 This enables
one to establish sequential walksuat Q(*N) + «Q(*3C') or wy:
Q(1N) + «Q(13C%) as well asw,: Q(*°N).4 Taken together, the
novel (5,3)D GFT NMR experiments are powerful for efficiently
assigning proteins with high shift degeneracy and promise to pave
the way for NMR-based structural genomics of membrane pro-
teins!®
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